|
- import tensorflow as tf
- import numpy as np
- # Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
- x_data = np.random.rand(100).astype(np.float32)
- y_data = x_data * 0.1 + 0.3
- # Try to find values for W and b that compute y_data = W * x_data + b
- # (We know that W should be 0.1 and b 0.3, but TensorFlow will
- # figure that out for us.)
- W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
- b = tf.Variable(tf.zeros([1]))
- y = W * x_data + b
- # Minimize the mean squared errors.
- loss = tf.reduce_mean(tf.square(y - y_data))
- optimizer = tf.train.GradientDescentOptimizer(0.5)
- train = optimizer.minimize(loss)
- # Before starting, initialize the variables. We will 'run' this first.
- init = tf.global_variables_initializer()
- # Launch the graph.
- sess = tf.Session()
- sess.run(init)
- # Fit the line.
- for step in range(201):
- sess.run(train)
- if step % 20 == 0:
- print(step, sess.run(W), sess.run(b))
- # Learns best fit is W: [0.1], b: [0.3]
复制代码
|
|